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Summary

This project investigated the design, development and testing of new parallel numerical algo-

rithms for solving computational intensive kernels arising in Computational Fluid Dynamics (CFD)

applications. The architectures under consideration are multiple instruction multiple data (MIMD),

distributed-memory machines and clusters of workstations.
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1 Introduction

Distributed-memory parallel computers dominate today's parallel computing arena. These ma-

chines, such as Intel Paragon, IBM SP2, and Cray Origin200, have successfully delivered high

performance computing power for solving some of the so-called "grand-challenge" problems [1].

Despite initial success, parallel machines have not been widely accepted in production engineering

environments due to the complexity of parallel programming. On a parallel computing system, a

task has to be partitioned and distributed appropriately among processors to reduce communication

cost and to attain load balance. More importantly, even with careful partitioning and mapping, the

performance of an algorithm may still be unsatisfactory, since conventional sequential algorithms

may be serial in nature and may not be implemented efficiently on parallel machines. In many

cases, new algorithms have to be introduced to increase parallel performance. In order to achieve

optimal performance, in addition to partitioning and mapping, a careful performance study should

be conducted for a given application to find a good algorithm-machine combination. This process,

however, is usually painful and elusive.

The goal of this project is to design and develop efficient parallel algorithms for highly accu-

rate Computational Fluid Dynamics (CFD) simulations and other engineering applications. The

work plan is 1) developing highly accurate parallel numerical algorithms, 2) conduct preliminary

testing to verify the effectiveness and potential of these algorithms, 3) incorporate newly developed

algorithms into actual simulation packages. The work plan has well achieved. Two highly accu-

rate, efficient Poisson solvers have been developed and tested based on two different approaches:

1. Adopting a mathematical geometry which has a better capacity to describe the fluid, 2. Using

compact scheme to gain high order accuracy in numerical discretization. The previously developed

Parallel Diagonal Dominant (PDD) algorithm and Reduced Parallel Diagonal Dominant (RPDD)

algorithm have been carefully studied on different parallel platforms for different applications, and

a NASA simulation code developed by Man M. Rai and his colleagues has been parallelized and

implemented based on data dependency analysis. These achievements are addressed in details in

the next four sections.

2 Cylindrical Coordinate System for Rotating Fluids

Rotating fluids are often encountered in CFD applications. While Cartesian coordinate system is

the "standard" geometry for numerical computation, representing a rotating object in a Cartesian

coordinates results in degradation in the spatial resolution and introduces numerical in-accuracies

due to attempting to resolve circular flows in an inherently non-circular geometry. A Cylindrical

coordinate system is the natural coordinate system for rotating fluids.

We have developed a parallel method to solve Poisson's equation

= f, (1)



in Cylindrical coordinates (r, 0, z), where • is the potential, f is the source function, and V 2 denotes

the Laplacian operator. All quantities are expressed in dimensionless form. We solve Eq. (1) on a

uniformly zoned mesh.

This newly proposed algorithm takes full advantage of the periodic boundary condition that

naturally arises in the azimuthal coordinate direction by performing a discrete Fourier transform in

the azimuthal direction. Uniform zoning and Dirichlet boundary conditions in the vertical coordi-

nate direction then is exploited by additionally performing a discrete sine transform in the vertical

direction. This approach reduces the second-order-accurate, 7-point finite-difference equation to a

large set of 3-point (tridiagonal) finite-difference equations which are then solved in parallel. A an-

alytical comparison of this new method with other existing methods has been conducted. Analysis

and preliminary experimental results show that the new algorithm is efficient on both vector and

massively parallel machines. The success of the algorithm reduces the burden of using Cylindrical

coordinates in an engineering environment and may make Cylindrical coordinates a popular choice

in simulating rotating fluids.

2.1 The Algorithm

Our method of solution incorporates the above described general techniques in the following se-

quence:

1. A one-dimensional FFT is performed, in the azimuthal coordinate direction, on the MSF

(Modified Source Function) at each radial and vertical location.

2. The transpose3d subroutine (see below) is called to align the vertical coordinate direction

of the MSF with the internal memory of each PE (Processing Element).

3. A one-dimensional FST is performed in the vertical coordinate direction on the MSF at

each radial and Fourier mode location.

4. The transpose3d subroutine is called to align the radial coordinate direction of the MSF

with the internal memory of each PE.

5. Independently for each Fourier mode and each sine mode location, a direct solution is

obtained for a set of linear-algebra equations This is accomplished via a straightforward

solution of the 1D tridiagonal matrix problem using LU decomposition with forward-

and back-substitution.

6. The transpose3d subroutine is called to align the sine mode direction of i¢m,k' (J) with

the internal memory of each PE.

i
7. A one-dimensional inverse FST is performed in the sine mode direction on ¢m,k'(J) to

obtain ¢_(j, k).

8. The transpose3d subroutine is called to align the Fourier mode direction of ¢_(j, k) with

the internal memory of each PE.

i "k9. A 1D inverse FFT is performed in the Fourier mode direction on ¢m(3, ), to obtain the

coordinate-space solution _(j, k, l).



transpose3dis a subroutine provided by MasPar for 3-D matrix transform. Steps 1, 3, 5, 7, and 9

are embarrassingly parallel and there is no communication needed. Steps 2, 4, 6, and 8 contain zero

computation with 100% communication, but in each of these cases the communication is partially

parallelizable since communication only occurs in one of the MasPar grid directions.

2.2 Experimental Results

Our Poisson solver was developed on an 8,192-node (128 x 64 grid of processors) MasPar MP-

1. The MasPar MP-1 is a distributed-memory, SIMD computer in which a 2D (X,Y) grid of

processor elements (PEs) comprises the primary computing engine of the machine. This machine is

configured such that each PE contains 64 KBytes of local dynamic RAM (DRAM); hence, the 8K-

node system contains 0.5 GBytes. On MasPar systems, each of the PEs has been crafted so that it

communicates most efficiently with its eight nearest neighbors via X-net hardware. Communication

beyond nearest neighbors can be handled via a somewhat slower, global router network [2].

Our implementation is efficient, in part, because it exploits the particular way that the data is

laid out across the distributed-memory, MasPar platform [3]. In particular, we have defined our

3D arrays so that, initially, our radial coordinate direction coincides with the X-processor grid;

our vertical coordinate direction coincides with the Y-processor grid; and our azimuthal coordinate

direction aligns with the internal memory of each PE. Hence, if the size of our (r, z) computational

grid is at most equal to the size of the (X, Y) grid, each PE has stored in its own local DRAM

only one "ring" of azimuthal data corresponding to a particular (r, z) location in our computational

grid. The algorithm is not constrained to dimensions of this size, however.

The timings of the new parallel algorithm are given in Table 1. In this table we list the size

of the computational grid, the corresponding timings on the MasPar MP-1 for the implementation

of the newly proposed method, the corresponding timings on the MasPar MP-1 for the traditional

ADI implementation, the speedup we have obtained from the proposed method over the ADI

implementation and timings on a Cray C90. In examining this data, one should note that our code

is written in mpf which automatically takes full advantage of all 8K processors available. Speedup

of the proposed method over the ADI method increases with the problem size and shows that the

proposed method has a better problem size scalability than that of the ADI method. Finally, the

proposed method achieves a better performance on the MasPar than the ADI method on a Cray

C90, which demonstrates a complete success of massively parallel computing.

As a demonstration of the overall efficiency of our algorithm, we present in Table 2 the timings

for 3D array transpositions, FST, FFT, and tridiagonal inversion on the MP-1 for all the grid sizes

listed in Table 1. Notice that the 3D transposition has to be performed four times during the

solution process. From Table 2 we can see that the ratio of communication time to total execution

time is reduced significantly when the problem size is increased. Communication cost contributes

more than 30% of the total execution time when the grid size is 32_, and less than 3% of the total

execution time when the problem size is 1283 .

We are currently using a modified version of the Fortran 77 subroutine given in [4] for the FST.

4



grid size MP-1, FST MP-1, ADI Speedup C90, ADI

323 0.384 2.29 5.96

643 0.645 4.52 7.01 1.48

1283 2.16 17.7 8.18

Table 1. Comparison : Execution Times in Seconds

grid size

323

643

1283

FFT

1.12 x 10 -2

2.22x 10.2

1.17 x 10-I

Sine Trans. I Trid. Sol.

5.02x 10-2

1.13x 10-I

4.10x 10-I

2.19 x 10 -2

4.56 x 10.2

1.50 x 10 -1

Transpose3d

1.96 x 10 -2

2.24 x 10 -2

2.84 x 10-2

Table 2. Internal Comparison of the Proposed Algorithm

This subroutine has not been optimized for the MasPar MP-1 architecture and is thus slower than

the MasPar specific FFT subroutine used in the ADI method. A further speedup is expected when

we implement the MasPar specific FFT subroutines into the code for the FST.

3 Compact Scheme for Highly Accurate Discretization

Since its introduction, compact scheme has been mainly used to approximate derivatives of a

function when the values of the function are known. In fact, the original compact scheme can be

used to discretize 1-Dimensional (l-D) operators like time-dimensional derivatives in a differential

equation, but it cannot necessarily approximate spatial differential operators in Partial Differential

Equations (PDEs). The reason of the limitation lies in that to approximate high dimensional
02 02

differential operators, like the 2-Dimensional (2-D) Laplacian operator /_ = _ + b-_, one cannot

use 1-D compact scheme to approximate each of its 1-D component when the function values are

unknown. For example, to discretize a 2-D Poisson equation in Cartesian coordinates system

p==+ = a(x, y), (2)

if we use the original one dimensional compact schemes to approximate Pxz and Pyy respectively,

we will get

1pi-l,j 5pi,j 1 pi+l,j 1 pi,j-1 " " 1 pi,j+l

_ 1 pi+l,j pi,j+l pi,j-1 4pi,j)._ -_ (p-l,j + + + _
(3)

The right-hand-side of Eq.(3) contains the unknown which we want to solve. However, the left-

hand-side of Eq.(3) is not a linear combination of the Laplacians operator /kp. Equation (2)

and (3) cannot be combined and manipulated to form a solvable linear equation. Current results



on compactschemescannotbeapplieddirectly to 2-D PDEsdirectly. Investigationneedsto be
conductedto applycompactschemeson highdimensionalPDE operators.

Wehavedevelopeda2dimensional,4-thorderaccuratecompactschemefor thediscretizationof
Poissonequations.Basedon thisdiscretization,anefficientalgorithmis introduced,whichachieves
4-thorderaccuracywith thesamecomputationcomplexityasthebestexisting2rid orderaccurate
algorithm.What is more,the newalgorithmis designedfor Neumannboundaryconditionswhich
arehard to solvecomparedwith Dirichlet boundaryconditions.By analysis,this new algorithm
is N times faster than the conventional 4-th order accurate method, where N is number of grid

points on each dimension.

3.1 The Fourth-Order Fast Solver

After some innovative discretizations for boundary conditions, a Helmholtz equation with Neumann

boundary conditions can be incorporated into the following linear system:

A P= - h2R- --_ (AR + AR) + 2hU + O(h 5). (4)

After tridiagonalization, equation (4) becomes

h-2FAF-1p = B , (5)

h2 (AR+ AR) + 2h-lU, and A = FAF -1.where B = -3R- T

carried out in the following steps:

i) Compute the cosine values to be used in the FCT.

2) Compute the value of each entry in matrix A.

3)

4)

5)

The fourth-order algorithm is

Compute the vector U in equation (4).

Compute the right-hand side of (5).

h2 ()_R + AR) which is to beThis is done by adding the results from step 1) to -3R- -_-

computed in this step.

Apply inverse FCT to the right-hand side of equation (5).

This is done by multiplying matrix F11 to each block Bi in the matrix B, for i = 0, 1, ..., M,

where Bi = (bio, bil, • • • , biN) T is the i-th N-component-long block of vector B.

Solve the tridiagonal system AY = F-1B for Y, where Y = F-IP.

Because of the particular structure of matrix A, we get N independent tridiagonal systems,

each of size M. Reassemble the right-hand side F-1B according to the structure of A, and

then solve the N tridiagonal systems.



7) Apply FCT to vector Y computed in step 6) to recover P.

This is done by multiplying matrix F1 to each of vector Y's N-component-long block Yi for

i = 0, 1, ..., M.

The operation count of each step of the fourth-order algorithm on a square domain of N × N, from

steps 1 to 7, is:

1. N multiplications and 0.bN additions;

2. 6N multiplications and 2N additions;

3. 36N multiplications and 48N additions;

4. N 2 + 10N multiplications and 4N 2 + 12N additions;

5. N 2 log 2 N + N(log 2 N - 4) multiplications and N2(1.5 log 2 N + 1.5) - N log 2 N additions;

6. 5N 2 + 6N multiplications and 3N 2 + 4N additions;

7. N 2 log 2 N + N(log s N - 3) multiplications and N2(1.5 log 2 N + 2.5) - N log s N additions.

The total operation count of the algorithm is the sum of the work of the seven steps, which is

N2(6 + 2 log s N) + N(2 log s N + 52) multiplications and

N2(31ogs N + 11) + N(-21og 2 N + 67) additions (6)

= N2(blogs N + 17) + l19N.

It is ./V 2 -{-45N multiplications and 4N 2 + 53N additions more than the operation count of the

conventional second-order fast Poisson solver [5].

The above computation analysis is based on N, the reciprocal of mesh size. Second order

algorithms need smaller mesh sizes than that of 4-th order algorithms to achieve the same accu-

racy. Therefore, they are slow in high performance computing practice compared with 4-th order

algorithms.

Let T4 and T2 denote the time needed by our 4-th order and the conventional order 2 methods

respectively to solve a problem within a given error tolerance. The following equation shows the

execution time difference of these two methods [6].

C2N4(blogs CN2+ 12) + 21C2N
T2:T4 = (7)

N2(blog= N + 17) + l19N

For "well-behaved" equations (e.g. the derivatives of different orders differ within a factor of 5

and A is moderately small), the parameter C assumes a range of [¼, 1]. For these "well behaved"

equations, the time ratio 7"2 : T1 will fall between _0N2 and 2N 2 by formula (7). In other words, the

conventional second order solver will take roughly _0N 2 to 2N 2 times more computation than that

of the newly-proposed fourth order solver to reach the same accuracy. The difference is huge. The



newlyproposedalgorithm is unparalleledfasterthan otherexistingdirect solverswhena fourth
orderaccuratesolutionis wanted.

A companionalgorithmis alsoderivedin [6] for Helmholtzequationswith Neumann-Dirichlet
conditions.

3.2 Experiment Results

By definition,a numericalmethodis fourth orderaccurateif andonly if whenthe numberof grid
points doublesthe discretizationerror will decreaseat a rate of . Five Helmholtzequations
with knownexactsolutionshavebeenchosenastestproblemsto verify the analyticalresultsand
to illustratethe performancegainof the highordermethod[6].Amongthefivetest problems,two
havepolynomialsolutions,with onehavinga fractionaldegree.Theother threearewith solutions
of sine-exponentialfunction,polynomial-cosinefunction,andtwo dimensionalcosinefunction, re-
spectively.Theyrepresenta largeclassof practicalHelmholtzequations.Experimentaltestshave
beenconductedon a DEC Station5000to measurethe numericalresultsand executiontime. As
listedin Tables3 to 8,experimentalresultsmatchanalyticalresultsclosely.Measuredperformance
confirmsthat the newlyproposedalgorithmis highlyaccurateand efficient.

Table3. SolvingPxz + Pyy - llP = R on Unit Square with P = eXsin(y)

Fourth Order

N -- 8 16 32 64 128 256 512

Maximal error 1.10E-04 7.30E-06 4.67E-07 2.95E-08 1.85E-09 1.16E-10 9.40E-12

Relative error 4.22E-05 2.57E-06 1.58E-07 9.81E-09 6.11E-10 3.80E-11 3.22E-12

Order 3.9 4.0 4.0 4.0 4.0 3.6

Time(seconds) 0.004 0.016 0.066 0.27 1.20 5.3 24

Second Order

N = 8 16 32 64 128 256 512

Maximal error 1.94E-03 4.94E-04 1.24E-04 3.10E-05 7.76E-06 1.94E-06 4.85E-07

Relative error 7.22E-04 1.69E-04 4.06E-05 9.93E-06 2.46E-06 6.11E-07 1.52E-07

Order 2.0 2.0 2.0 2.0 2.0 2.0

Time(seconds) 0.004 0.012 0.066 0.26 1.13 5.2 24

Two performance metrics axe used in the measurement. The metric Order, defined by

MaxE(n)

Order(n, n+l) = log 2 MaxE(n + 1)'

measures the order of accuracy of numerical solutions. The term Relative error is defined as

Relative error -
liP-PIll

IIPII 

where P and/_ denote the exact solution and computed solution respectively, and I1" II1 is the 11



Table 4. Solving P_x + Pyy = R on Unit Square with P = cos(xy)

Fourth Order

N -- 8 16 32 64 128 256 512

Maximal error 5.26E-05 2.90E-06 1.66E-07 9.88E-09 5.99E-I0 3.70E-11 1.49E-12

Relative error 9.32E-06 5.00E-07 2.95E-08 1.79E-09 1.11E-10 6.91E-12 1.71E-13

Order 4.2 4.1 4.1 4.0 4.0 4.7

Time(seconds) 0.004 0.012 0.062 0.28 1.20 5.18 23

Second Order

N = 8 16 32 64 128 256 512

Maximal error 8.15E-04 2.01E-04 5.00E-05 1.25E-05 3.12E-06 7.80E-07 1.95E-07

Relative error 1.11E-04 2.53E-05 6.05E-06 1.48E-06 3.67E-07 9.12E-08 2.27E-08

Order 2.0 2.0 2.0 2.0 2.0 2.0

Time(seconds) 0.004 0.016 0.062 0.28 1.13 5.04 23

norm. All the testing is conducted on the unit square domain [0, 1] x [0, 1] with the same uniform

mesh size h on each dimension. N = 1/h is the number of grid points on each x- and y-dimension.

Tables 3 to 6 present the time-accurate comparison between the new fourth-order fast solver

and the traditional second-order fast solver, for the four testing problems with Neumann-Neumann

boundary conditions. Measured experimental results show our new method is indeed fourth or-

der accurate and achieves the high order accurate solution without increasing execution time, as

compared with the conventional second-order fast solver.

Table 7 lists measured experimental results for a special Poisson equation whose solution is a

polynomial of degree four. The measured performance shows that the fourth-order direct Neumann

solver gives the exact solution while the second order method cannot reach high accuracy even with

enlarged problem size and with extended execution time.

Table 8 compares the measured execution time of the conventional second-order faster Poisson

solver and the newly-proposed fourth-order solver. The testing problems are solved by the fourth-

order algorithm. Then, the same problems are solved with the conventional second order method

to match the achieved accuracy with increased number of grid points and execution time. The

execution times of the fourth order algorithm and the second order algorithm are listed side-by-

side in Table 8 for each of the testing problems. Table 8 shows that the new method is 300 to

1500 times faster, as indicated by the column of time ratio for the two solvers. Notice that the

performance gain increases largely when the problem size increase with the problem domain. This

time ratio increase is no surprise. It is around N2/4 and is well predicted by the range [_0 N2, 2N 2]

given in Section 3.1. The new algorithm is well suitable for scalable computing where problem size

increases with the computational power.

Experimental results also provided in [6] for corresponding Neumann-Dirichlet boundary con-

ditions. As confirmed by the measured results, solutions of Neumann-Dirichlet problems are also

of fourth order accurate. In addition, they even have a smaller error than that of the Neumann-

9



Table5. SolvingP_x + Pyy - P = R on Unit Square with P = (x 3 - x2)cosy

Fourth Order

N = 8 16 32 64 128 256 512

Maximal error 7.73E-05 4.90E-06 3.07E-07 1.92E-08 1.20E-09 7.50E-11 4.64E-12

Relative error 5.72E-04 3.12E-05 1.83E-06 1.10E-07 6.79E-09 4.21E-10 2.63E-11

Order 4.0 4.0 4.0 4.0 4.0 4.0

Time(seconds) 0.008 0.016 0.086 0.269 1.24 5.30 24

Second Order

N = 8 16 32 64 128 256 512

Maximal error 6.86E-03 1.72E-03 4.31E-04 1.08E-04 2.69E-05 6.73E-06 1.68E-06

Relative error 5.46E-02 1.21E-02 2.83E-03 6.85E-04 1.68E-04 4.18E-05 1.04E-05

Order 2.0 2.0 2.0 2.0 2.0 2.0

Time(seconds) 0.004 0.012 0.059 0.262 1.14 5.02 24

Neumann boundary problems, since there is no discretization error arising along x-dimensional

Dirichlet boundary conditions. This feature is also well matched by our experiment results.

4 Testing of Tridiagonal Solvers

Solving tridiagonal systems is a basic computational kernel of many scientific applications. Tridi-

agonal systems appear in multigrid methods, the Alternating Direction Implicit (ADI) method, the

wavelet collocation method, and in line-SOR preconditioners for conjugate gradient methods [7]. In

addition to solving PDE's, tridiagonal systems also arise in digital signal processing, image process-

ing, stationary time series analysis, and in spline curve fitting. Because of its importance, intensive

research has been carried out on the development of efficient parallel tridiagonal solvers. One di-

rect motivation in developing efficient kernels for solving tridiagonal systems at NASA is that the

implicit systems of compact schemes [8], which are relatively new finite difference schemes widely

used in production codes at NASA Langley and Ames research center, are tridiagonal systems.

Three parallel tridiagonal solvers, namely the PDD, the Reduced PDD, and the PPT, have been

carefully tested and compared during the funding period. The PDD and Reduced PDD algorithm

are two newly proposed algorithms [7]. They are developed based on a new approach, introducing

bounded perturbation if necessary, to reduce communication and computation for optimal perfor-

mance. The PDD algorithm, designed for strictly diagonally dominant problems, is very efficient

in communication. The Reduced PDD algorithm maintains the minimum communication provided

by the PDD algorithm and has a reduced operation count. It has a smaller operation count than

the conventional sequential algorithm for many applications. The PPT algorithm's [9] computation

and communication complexity is similar to the widely used Wang's algorithm [10]. It also has a

substructure similar to the algorithm of Lawrie and Sameh [11]. Its performance can be used as

a good representation of existing algorithms. While the sequential algorithm requires more opera-

10



Table6. SolvingPxx ÷ Pyy - 24.75P = R on Unit Square with P = x 5'5 + y5.5

Fourth Order

N -- 16 32 64 128 256 512 1024

Maximal error 4.75E-04 3.46E-05 2.32E-06 1.50E-07 9.55E-09 6.01E-10 3.84E-11

Relative error 3.45E-04 2.50E-05 1.67E-06 1.07E-07 6.81E-09 4.28E-10 2.67E-11

Order 3.8 3.9 4.0 4.0 4.0 4.0

Time(seconds) 0.016 0.059 0.285 1.24 5.30 23 102

Second Order

N = 16 32 64 128 256 512 1024

Maximal error 1.82E-02 4.61E-03 1.15E-03 2.89E-04 7.22E-05 1.81E-05 4.51E-06

Relative error 8.34E-03 2.09E-03 5.20E-04 1.30E-04 3.24E-05 8.09E-06 2.02E-06

Order 2.0 2.0 2.0 2.0 2.0 2.0

Time(seconds) 0.016 0.055 0.281 1.13 5.05 25 97

Table 7. Solving Pxx + Py_ = R on Unit Square with P = x 4 + y4

Method Fourth Order Second Order Second Order

N

Maximal error

Relative error

Time(seconds)

8

6.66E-16

1.09E-15

0.004

256

3.05E-05

2.53E-05

5.04

1024

1.91E-06

1.59E-06

100

tions for solving periodic systems, the three parallel algorithms basically have the same operation

count for solving periodic and non-periodic systems. An outline of the testing results of these three

algorithms is given below.

4.1 Operation Comparison

Table 9 gives the computation and communication count of the tridiagonal solvers under consid-

eration for solving non-periodic systems. Tridiagonal systems arising in many applications are

multiple right-hand-side (RHS) systems. They are usually "kernels" in much larger codes. The

computation and communication counts for solving multiple RHS systems are listed in Table 9,

where factorization of the matrix is not considered. Parameter nl is the number of RHS. Note

that for multiple RHS systems, the communication cost increases with the number of RHS. For the

PPT algorithm, the communication cost also increases with the ensemble size. The best sequential

algorithm is the conventional Thomas algorithm [12], the LU decomposition method for tridiagonal

systems.

Communication cost has a great impact on overall performance. For most distributed-memory

computers, communication time with nearest neighbors is found to vary linearly with the problem

size. Let S be the number of bytes to be transferred. Then the transfer time to communicate with
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Table8. Computationtimeof the twomethodsfor thesameaccuracy
Problem Method N Maximal error Time(seconds) Time ratio

1 Order 4 32 4.67E-07 0.066

Order 2 512 4.85E-07 24 364

1 Order 4 64 2.95E-08 0.27

Order 2 2048 3.03E-08 423 1570

2 Order 4 32 1.66E-07 0.062

Order 2 512 1.95E-07 24 389

2 Order 4 64 9.88E-09 0.28

Order 2 2048 1.22E-08 423 1510

3 Order 4 16 4.90E-06 0.016

Order 2 256 6.73E-06 5.02 314

3 Order 4 32 3.07E-07 0.062

Order 2 1024 4.21E-07 97 1560

4 Order 4 32 3.46E-05 0.059

Order 2 512 1.81E-05 25 424

4 Order 4 64 2.32E-06 0.285

Order 2 2048 1.13E-06 422 1480

a neighbor can be expressed as c_ + S_, where a is a fixed startup time and _ is the incremental

transmission time per byte. Assuming 4 bytes are used for each real number, the PDD and Re-

duced PDD algorithm take a + 8_ and c_+ 4_ time respectively on any architecture which supports

single array topology. The PPT algorithm requires a total-data-exchange communication. Com-

munication cost of the total-data-exchange depends greatly on the architecture present. The listed

communication cost of the PPT algorithm, in Table 9 and 10, is based on a square 2-D torus with p

processors (i.e. 2-D mesh, wrap-around, square) [3]. With a hypercube or multi-stage Omega net-

work connection, the communication cost would be log(p)_ + 12(p-1)_ and log(p)(_ + 8(p- 1)nl. j3

for single systems and systems with multiple RHS, respectively [9, 13].

If boundary conditions are periodic, tridiagonal systems arising in scientific applications are

periodic tridiagonal systems. Computation and communication counts for solving periodic systems

are listed in Table 10. The conventional sequential algorithm used is the periodic Thomas algorithm

[12]. Compared with Table 9, we can see that while the best sequential algorithm has an increased

operation count, the parallel algorithms have the same operation and communication counts for

both periodic and non-periodic systems. The only exception to this observation is the PPT algo-

rithm which has a slightly increased operation count. For the PDD and Reduced PDD algorithm,

however, the communication is given for any architecture which supports Ring communication in-

stead of 1-D array. Notice that when j < n/2, the Reduced PDD algorithm has a smaller operation

count than that of Thomas algorithm for periodic systems with multiple RHS.
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System Algorithm Computation Communication
bestsequential 8n - 7 0

Single
system

Multiple
right sides

thePPT
the PDD

the ReducedPDD
bestsequential

thePPT
the PDD

theReducePDD

17_+ 16p- 23
'-417_;

(5n - 3) • nl

(2a + 8pj3)(v_ - 1)

2a + 12_

2a + 12fl

0

(9p+lOp-11)-n1 (2a+Sp-nl'fl)(v/-P-1)

(9_+ 1).nl (2_+ 8nl. _)
(5_ + 4j + 1). nl (2a + 8nl./3)

Table 9. Comparison of Computation and Communication (Non-Periodic)

System Algorithm Computation Communication

best sequential 14n - 16 0
the PPTSingle

system

Multiple

right sides

the PDD

the Reduced PDD

best sequential
the PPT

the PDD

the Reduce PDD

Table i0.

17_ + 16p - 7

17_ -4
1 n- +6j-4

p

(7n - 1). nl

(9_+ lop- 3). ,_1
(9p + 1). nl

(5p +4j + 1)-nl

(25 + 8vZ)(v_- 1)
2a + 12/3

25 + 12fl

(25 + 8p. nl. 13)(x/_ - 1)

(25 + 8nl •j3)

(25 + 8nl. fl)

Comparison of Computation and Communication (Periodic)
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4.2 Experimental Results

The PDD and the ReducedPDD algorithmswereimplementedon the 48-nodeIBM SP2 and
72-nodeIntel Paragonavailableat NASA LangleyResearchCenter. Both the SP2and Paragon
machinesaredistributed-memoryparallelcomputerswhichadoptmessage-passingcommunication
paradigmsand supportvirtual memory.Eachprocessor(node)of the SP2is either functionally
equivalentto a RISCSystem/6000desktopsystem(thin node)or a RISCSystem/6000deskside
system(widenode). The ParagonXP/S supercomputerusesthe i860XP microprocessorwhich
includesaRISCintegercoreprocessingunit andthreeseparateon-chipcachesfor pagetranslation,
data,andinstructions.TheLangleySP2has48widenodeswith 128Mbyteslocalmemoryandpeak
performanceof 266MFLOPSeach.In contrast,theLangleyParagonhas72nodeswith 32Mbytes
of localmemoryand peakperformanceof 75MFLOPSeach.The heartof all distributedmemory
parallelcomputersis the interconnectionnetworkthat linkstheprocessorstogether.TheSP2High-
PerformanceSwitchis a multi-stagepacketswitchedOmeganetworkthat providesa minimumof
four pathsbetweenanypair of nodesin thesystem.Theprocessorsof Intel Paragonareconnected
in a two-dimensionalrectangularmeshtopology. The diameterof the 2-D meshtopology will
increasewith the numberof processors.For the SP2,the measuredlatency(start time), c_, is 45

microseconds and the measured transmission time per byte, /_, is 2 microseconds. For Paragon,

the measured latency and transmission time per byte is 50 microseconds and 6 microseconds,

respectively.

Speedup is one of the most frequently used performance metrics in parallel processing. From

the problem size point of view, speedup can be divided into the fixed-size speedup and the scaled

speedup. Depending on the scaling restrictions of the problem size, the scaled speedup can be

classified as the fixed-time speedup [14] and the memory-bounded speedup [15]. As the number of

processors increases, memory-bounded speedup scales problem size to utilize the associated memory

increase. In general, operation count increases much faster than memory requirement. Therefore, in

general, the work load on each processor will not decrease with increase in the number of processors

in memory-bounded scale up. Thus, scaled speedup is more likely to get a higher speedup than

that of fixed-size speedup. Figure 1 demonstrates the speedups of the PDD algorithm on the

SP2 machine. Since the cost of one-to-one communication does not increase with the number of

processors on the SP2 multi-stage Omega network, for number of processors from 2 to 32, the PDD

algorithm reaches a linear speedup on memory-bounded speedup. The measured speedup is below

ideal speedup because there is no communication in uniprocessor processing. In accordance with

the isospeed metric [2], the PDD algorithm is perfectly scalable in the multi-stage SP2 machine

from ensemble size 2 to 32.

Though the PDD and the Reduced PDD have similar relative speedup patterns, the execution

times of the two algorithms are very different. The Reduced PDD algorithm has a smaller execution

time than that of the PDD algorithm. For periodic systems, for the sample matrix, the Reduced

PDD algorithm even has a smaller execution time than the conventional sequential algorithm. The

timings of Thomas algorithm, the PDD algorithm, and the Reduced PDD algorithm on a single
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Figure 1. Measured Speedup of the PDD Algorithm on a SP2 Machine

IOP_ System of Order 6400, periodic

II Size I Thomas Alg. PDD Alg. Reduced PDD Alg.

Paragon 1600 I 0.8265 0.9026 0.6432

SP2 6400 I 0.7387 0.856 0.5545

Table 11. Sequential Timing (in seconds) on Paragon and SP2 machines

node of the SP2 and Paragon machine are listed in Table 11. The problem size for all algorithms

on SP2 is n = 6400 and nl = 1024, and on Paragon is n = 1600 and nl = 1024. The measured

results confirm the analytical results given in Tables 9 and 10.

Figure 2 shows the speedup of the Reduced PDD algorithm over the conventional sequential al-

gorithm, Thomas algorithm. The PDD algorithm increases computation count for high parallelism.

The Reduced PDD reduces computation count by taking advantage of diagonal dominance. Com-

pared to Thomas algorithm, the Reduced PDD algorithm has a smaller execution time for some

applications and achieved a superlinear speedup for our testing. Experimental results confirm that

the Reduced PDD algorithm maintains the good scalability of the PDD algorithm and delivers an

efficient performance in terms of execution time as well.

The PDD and the Reduced PDD algorithms are perfectly scalable, in the sense that their com-

munication costs do not increase with the order of the matrix and ensemble size, and the workload

is balanced. The PPT algorithm, however, has a serial processing part and a communication cost

which increases with the ensemble size. While the PDD and the Reduced PDD algorithms have

similar speedup curves on both the Paragon and the SP2 machines, the PPT has quite different
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Figure 2. Speedup of the Reduced PDD Algorithm Over Thomas Algorithm.

1024 Systems o.f Order 1600, periodic

speedup curves on the Paragon and the SP2 machines. Figure 3 shows the scaled and the fixed-size

speedup of the PPT algorithm on the SP2 machine. The measured speedup is considerably lower

than that of the PDD and the Reduced PDD algorithms. Parallel efficiency is usually defined as

speedup divided by the number of processors. Unlike the PDD and the Reduced PDD algorithm,

the efficiency of the PPT algorithm decays with the ensemble size. From Figure 3 we can see that

the PPT algorithm cannot reach linear speedup on the SP2 machine.

Our theoretical and experimental results show that the newly developed PDD and Reduced PDD

algorithm axe scalable and out perform traditionally used parallel solvers, in terms of execution

time and speedup. A technical paper has been written to report the experimental measurement

and analytical comparison of the PDD, Reduced PDD, and PPT algorithm [16]. The interested

reader may refer to [16] for more detailed informations.

5 Parallelization of a CFD Simulation Package

One CFD simulation code which is of interest to many researchers is the code developed by Man

Mohan Rai and his coworkers [17, 18]. This code (we call it Rai's code) solves 3-D Navier-Stokes

equations with Newton-Rapson-type techniques. During the past few years, different variations of

Rai's code have been developed by researchers for different CFD simulations. The PDD algorithm

developed by the PI [7] is perfectly scalable and has been used successfully in paxallelizing the

CDNS (Compressible Direct Navier-Stokes Simulation) code [19]. Unlike CDNS, the systems aris-

ing from Rai's code are neither periodic, symmetric, nor Toeplitz. The applicability of the PDD
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algorithm on Rai's code was studied in 1995. Analytical and experimental results show that the

PDD algorithm is applicable for Rai's code. In 1996, we first applied the PDD algorithm to paral-

lelizing Rai's code. The parallelization went smoothly, however, the speedup of the parallelization

was unsatisfactory. Puzzled by the low performance, we conducted a detailed study on the data

structure and dependency of the code. Performance profiling showed that the tridiagonal solver

subroutine lshl, which was parallelized by the PDD algorithm, only contributed less than 7% of the

total execution time. Time distributions showed that the module control was the critical section of

performance. The control module and its children subroutines contributed more than 90% of the

total execution time. Data dependence analysis was then performed on control for parallelization.

High level loop independence was identified and tested, and parallel partition was carried out based

on the identified independence. Special care was also given to the loop boundaries. Finally, parallel

PVM implementations of Rai's code were conducted on the SP2 machine available at the Cornell

National Supercomputer Facility and on a cluster of IBM RS/6000 workstations available at LSU.

A speedup of 11 was obtained with 16 processors on the SP2 machine for solving the control mod-

ule. Limited by our access on the Cornell machine, only small size problems were tested. A better

speedup is expected for large data sets.

5.1 Data Dependence and Partition

Functional decomposition is the first step toward analyzing the dependence structure of the par-

allelization of a sequential program. It breaks a main module into sub modules and reveals the

parent-children relationship within a module. Rai's code has 4K lines of code. It consists of 36
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subroutineswhichcanbegroupedinto severalmodules.Thehigh levelmodulesare initia, data,

control and output. Routines initia and control are the main modules. They have 12 and 20

children subroutines respectively. While subroutine initia is only executed once for each run. The

control module is called at each of the iteration steps. Execution of the control module dominates

the overall execution time. The function dependence structure of modules control is shown in Fig-

ure 4. The decomposition is obtained through analyzing and utilizing Unix utilities such as grep,

egrep, sort, awk, head, tail and pipes.

Figure 4. Function Decomposition of the control module

Data Dependence Concept

If the iterations of a loop can be executed in random order and still produce the correct result,

it is an independent loop [20]. Independent loops are perfect for parallel execution. But loops are

rarely independent. Dependent loops, in which the dependency involves all the statements in the

loop, must be executed serially on any machine due to their dependency. When the dependency

does not involve all the statements in the loop, partial overlapping, or pipelining of successive

iterations may be possible during the execution.

Data dependence is a consequence of the flow of data in a program. A task that uses a variable

in an expression is data dependence on the task which computes the value of that variable. If task

Tw is data-dependent on task Tv, then execution of task Tv must precede execution of task T_.

Data dependence can be further classified into five categories:

1. Flow dependence: A statement $2 is flow-dependent on statement $1 if an execution path

exists from $1 to $2 and if at least one output of $1 feeds in as input to $2.

2. Antidependence: Statements $2 is antidependent on statement $1 if $2 follows $1 in program

order and if the output of $2 overlaps the input of S1.

3. Output dependence: Two statements are output-dependent if they write the same output

variable.
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4. I/O dependence:Readand write refer to the samefile.

5. Unknowndependence:the dependencecannot beexplicitlydetermined.

Bernstein'sconditionsimply that two processescanbeexecutedin parallel if they are flow-
independent,anti-independent,andoutput-independent[21].

The aboveconceptsof datadependenceareusedto analyzethe CFDprogramfor parallelism.
Loopsperfectfor parallelizationarediscoveredat a veryhighlevelfor bothsubroutinescontrol and

lhsl. Some careful manipulation of data initialization in control is done to achieve this goal. Since

control takes more than 90% execution time, its parallelization is very significant to the overall

performance.

Data Dependence Analysis

The module control does the calculation at each iteration step. It has quite a few nested loops.

To get maximum parallelization, a natural approach is to go to the outermost loop. Observing Rafts

code, the loop 10 is to get the iterative solution at each iteration step. Since the next iteration

always uses the result of the current one, loop dependence is internally determined. Actually, it

goes through all the X direction planes to do the solutions for Y and Z directions in loop 160 and

then swaps to all the Y planes for solutions in X direction (this is done by lhsl).

The analysis gives the same result. First, there is a flow dependence from one iteration to the

next. While the current iteration writes q using putq in loop 300, the next iteration reads vector q

in loop 150 and loop 160. Second, there is an anti-flow dependence within each iteration because

the input q in loop 150 is also the output in loop 300. These two types of data dependence suffice

that it is very unlikely to do parallelization at the loop 10 level. The next highest loop level is

loop 160. It has 13 direct subroutine calls and the out loop goes over all the X direction planes.

It involves solving for Y and Z direction and calculating of all the rhs which includes rhsl, rhs2,

rhs3 and rhsv. It should be noticed that rhsv calls the time consuming subroutine stress directly.

There are several getq calls and one putq call within loop 160. This however, does not intro-

duce a flow or anti-flow dependence because they operate on different units of the qts. The call

getq(ifetch, 1, qeql) seems to be an anti-flow dependence because the i - th iteration uses the qeql

from iteration i + 4 in X direction. The boundary elements are exceptions. Two things should be

noticed here. First, in sequential calculation, the iteration i + 4 is done after the i- th iteration and

the values of qeql used are from the last time step iteration. Second, if the i-th and the i + 4th iter-

ations are grouped into the same process for parallelization, the dependence goes away. This uses

the exceptions of boundaries because their elements are not affected by the i + 4th iteration. This

is exactly what comes from the data dependence analysis: loop 160 can be parallelized perfectly.

What about I/O dependence, output dependence and unknown dependence? Since there is no

file writing or reading involved within loop 160, the I/O dependence is eliminated. Although each

iteration updates or writes the putq, there is no overlapping because they use different i values.

This takes care of the output dependence. Finally, the unknown dependence is eliminated through

tracing and analyzing all the called subroutines. The fact that the arrays do not involve implicit

or nested subscripts makes the analyzing a little easier.
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Theabovedescriptionfor datadependenceanalysisseemsto besimple,but the actual work is

verycomplicated.

Data Partition Analysis
Sincethe loops for perfectparallelizationare found in modulescontrol and lhsl, the data

partition is straightforward. From the partition point of view, more sub-tasks correspond to the

less execution time. However, communication is necessary for parallel processing of the loop. The

communication overhead is highly determined by the network conditions and by the whole virtual

machine system in the case of PVM. Massive parallelization may not necessary lead to a good

performance. To reduce the communication cost, multicasting mode is used for data communication

in the parallel PVM implementation.

5.2 Experimental Results on SP2

PVM implementation of Rai's code has been tested on an SP2 system and on a cluster of worksta-

tions. We only present the experimental results on SP2 here. Results for a cluster of workstations

can be found in [22]. The parallel implementation on SP2 is carried out with EASY-LL batch

system using architecture RS6K and data encoding PvmDataRaw.

The execution time of the parallelized control module is measured for performance study. Five

iterations are conducted in the code to reach a satisfactory solution. The execution time of each

iteration of control and the corresponding speedup are presented in Table 12. The parallelized

control module achieves a pretty good speedup. Its measured speedup is a linear function of

the number of processors. Notice that the measured time of each iteration does not include the

communication cost between each iteration. Even without considering the communication overhead,

due to sequential/parallel portion increases, the measured speedup gets farther away from the ideal

speedup when number of processors increase. The power of parallel computing can be utilized

more efficiently if scaled computing is adopted, in which problem size increases with system size

[15]. Figure 5 shows the input data used in our testing. The test problem is small due to our

limited access to the Cornell SP2 machine. While our current experiment results do not show the

best speedup possible, they clearly demonstrate the correctness and effectiveness of our dependence

analysis and partition approach. They have shown the high potential of parallel processing gain in

solving Rai's code. Also, our results show that using data encoding PvmDatRaw provides a better

performance than using PvmDataDefault in solving Rai's code.

Run Seria 2 nodes 4 nodes 8 nodes 16 nodes

Time (Sec.) 64.18 34.83 18.45 10.49 5.79

Speedup 1 1.84 3.48 6.12 11.08

Table 12. Execution Time and Speedup of the Control Module
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Input Format
read(5,*)iread,iwrite
read(5,*)niter, nprint
read(5,*)imax,jmax, kmax,iplt, ilcc
read(5,*)datu, cour,amach,reperin

Input Data:
00
ii
768 48 7 728 182

0.002 0.25 2.25 635000.0

Figure 5. Input Data Used in Testing

6 Stimulus Assessment

Analytical and experimental results show that our newly developed algorithms are significant faster

than the traditionally used method when accurate solutions are required. By their practical impor-

tance, these algorithms, especially the compact scheme based algorithms, should be well noticed by

the high performance computing community. They will make a contribution in the development of

highly accurate simulations. One direction of future research is to extend the compact discretiza-

tion scheme to full reacting Navier-Stokes equations and other PDE systems for high-order accurate

algorithms. Another direction of future research is to combine the parallelization and discretiza-

tion of compact schemes with the recently developed adaptive Wavelet collocation method [23]

for portability (automatic mult-level resolution) and effectiveness (non-uniform stencil spacing).

Study how to incorporate the newly developed algorithms into actual engineering applications is

also a possible direction under consideration. The success of these algorithm development and their

impact on the simulation of CFD application certainly will directly contribute to NASA missions.

Partially supported by this grant, the PI has established his research group, Scalable Computing

Software (SCS) group, at LSU. He has been successfully receiving fundings from NFS and Louisiana

State to conduct research in high performance computing. Two master students have graduated

through the support of this research. Before graduation, these students had already received

multiple offers and with starting pay more than $50,000s. It demonstrates the success of the

research project toward education. Several other students have expressed their interests to join the

PI's research group recently.
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